Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Dan Rumney
January 22, 2009

With the introduction of Multiple-Target FlashCopy® and Cascaded FlashCopy to IBM® System Storage™ SAN
Volume Controller (SVC) , it can become difficult to keep track of which Virtual Disks are mapped to which, and
how FlashCopy Mappings (FCM) depend upon one another. While submitting svcinfocommands or using the SVC
Console can provide thisinformation in atextual format, there are times when a diagram provides all the information
you need in an easy to understand format.

This paper outlines a method for generating diagrams that link VDisks and FlashCopy Mappings. It also serves as
a worked example of automation on the SYC Command Line. This paper assumes familiarity with SVC and the
FlashCopy functionality.

1. SVC FlashCopy Mappings

When SV C wasintroduced in 2003 it included anumber of Copy Services: FlashCopy and Remote Copy.
FlashCopy is a Point-In-Time Copy Service, whereby the contents of a Source Virtual Disk (Source) is
copiedtoaTarget Virtual Disk (Target), such that the Target isan exact copy of the Source, at that pointin
time. The relationship between a Source and a Target is called a FlashCopy Mapping (FCM). The original
implementation was such that a Source could only ever have one active Target. In addition to this, a Target
of one FCM could not be the Source of another FCM. A number of FCMs can be gathered together into
a FlashCopy Consistency Group (FCG) and managed as a single entity, to ensure that al Target VDisks
in the FCG represent the exact same point in time.

With the release of SVC 4.2.1, new types of FlashCopy arrangements can be created. A single VDisk can
act as the Source to multiple Targets. In addition to this, a VDisk which is acting as the Target of one
FCM can also act as the Source of a different FCM. For more details on Copy Servicesin SVC, seethe
Redbook SVC 4.2.1 Advanced Copy Services [SG24-7574-00] [http://www.redbooks.ibm.com/abstracts/
s9247574.html].

In a complex environment, the interactions between FCMs and VDisks can get quite involved.
Dependencies between FCMs stem from internal data structures within the cluster rather than the logical
connections between VDisks. All of these dependencies can be discovered by submitting the appropriate
svcinfo commands, but the information is presented in a purely textual way; this provides no insight into
the interaction between cluster objects. Example 1, “ Sample output from SV C commands, viewing FCM
interactions’ shows how this output 100Kks.

http://www.redbooks.ibm.com/abstracts/sg247574.html
http://www.redbooks.ibm.com/abstracts/sg247574.html
http://www.redbooks.ibm.com/abstracts/sg247574.html

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Example 1. Sample output from SVC commands, viewing FCM interactions

| BM 2145:

group_i d:
0: f cnapO:

1:fcmapl:
2: fcmap2:
3: f cmaps3:
4: f cmap4:
| BM 2145:
| BM 2145:
fc_idifc_

1:fcmapl
3: fcnap3

cl uster _name: adni n>svcinfo | sfcmap -delim:
i d: name: source_vdi sk_i d: source_vdi sk_nane: target _vdi sk_i d: target _vdi sk_nane:
group_nane: st at us: progress: copy_r ate: cl ean_progress: i ncrenent al

1039: vdi sk1039: 1040:
1041: vdi sk1041: 1042:
1043: vdi sk1043: 1044:
1045: vdi sk1045: 1046:
1046: vdi sk1046: 1047:

cl uster _nane: adni n>

vdi sk1040: : :
vdi sk1042: : :
vdi sk1044: :
vdi sk1046: : :
vdi sk1047: : :

i dl e_or_copi ed:
i dl e_or_copi ed:
;i dle_or_copied:
i dl e_or_copi ed:
i dl e_or_copi ed:

100: 93:

100: 30:
100: 88:
100: 36:
100: 96:

100:

100:
100:
100:
100:

cl uster_nane: adm n>svci nfo | sf cmrapdependent maps -delim:

nanme

on
of f
on
of f
on

The output from the svcinfo command does not lend itself to a swift overview of the cluster state. Welook
to the DOT language to generate a graphical representation of this information.

2. The DOT Language

The DOT Language is alanguage used to describe directed and undirected graphs. Once written, the DOT
can then be processed by an appropriate program, to render the graph on screen.

A directed graph consists of nodes and edges. A node is a graphical shape which may or may not contain
some text. The nodes are interconnected by lines, called edges. In a directed graph, the edges have arrows
at one or both ends. Figure 1, “Sample directed graph” shows a sample directed graph. Ellipses a,b, ¢
and d are all nodes.

Figure 1. Sample directed graph

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

The DOT language is quite straightforward; for instance, the DOT required to generate Figure 1, “ Sample
directed graph” can be seen in Example 2, “DOT language for generating a directed graph”. The nodes
are represented by the various |etters. In each line in the example, you can see the 'arrow' notation which
indicates a directed edge, joining two nodes.

Example 2. DOT language for generating a directed graph

di graph EXAMPLE

{
a->c;
b -> c;
c -> d;
d -> a;
}

A DOT file only describes the graph. Y ou must pass thisfile to a rendering program in order to generate
agraphical representation. Once such program is dot, which is part of the Graphviz [http://graphviz.org/
] package. Once installed, the invocation shown in Example 3, “Invocation to generate graphic from
DOT language (Windows)” will generate a GIF file rendering of the sample directed graph described in
Example 2, “DOT language for generating a directed graph”.

Example 3. Invocation to generate graphic from DOT language (Windows)
dot -T gif -o sanpleDigraph.gif -K dot -v sanpl eD G aph. dot

The capabilities of the DOT language lend themselves directly to the challenge of visualizing FlashCopy
Mapping and V Disk relationships. The challengeisto generatethe DOT necessary to generate our required
visualization. In order to do this, we can use SVC Command Line Scripting.

3. SVC Command Line Scripting

The SVC Command Line Interface is based on a restricted Bash Shell. This provides us with a double-
edged opportunity. On one hand, the Bash Shell means that we have the opportunity to execute scripts
while logged in to the SV C Command Line. On the other hand, the restricted aspect strongly limits what
we can do and results in the need for some imaginative scripting.

The Bash Shell includes a number of 'built-in' commands that can be used, such as:

if
while
for
read
echo

The restrictions on the Shell mean that there is no access to scripting standards such as sed, awk and
grep. In addition, 10 cannot be redirected to files. However, command output can be redirected to other
commands, via pipes.

Appendix A, Graph generating script contains the script that we'll be discussing for the remainder of this
paper. This script createsa CLI function which, when executed, generates DOT language which describes
the connections between a set of VDisks and FCMs. The CLI function has one parameter, whichistheid
of one of the cluster's VDisks. Given aVDisk ID, this command follows the procedure bel ow.

1. Search for any FCMs which have the provided VDisk as a Source or Target

http://graphviz.org/
http://graphviz.org/

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

2. For any FCMsfound, identify the counterpart VDisks and repeat step 1 for each of the new VDisks
3. For al of the FCMs found, search for al dependant FCMs
4. Generate the DOT language, describing the VDisk and FCM interactions

Example 4, “ Sample output from script” shows example output from thisfunction. When rendered by dot,
the graphic shown in Figure 2, “ Sample directed graph”

Example 4. Sample output from script

| BM 2145: cl ust er _nane: adnmi n>makeFCVapTree 1212
di graph F {
1210 [style=filled,fillcol or=green]
514 [shape=box, hei ght =0. 4, wi dt h=0. 4, fill col or =green, styl e=fill ed]
1210 -> 514
514 -> 1212
515 [shape=box, hei ght =0. 4, wi dt h=0. 4, fill col or =green, styl e=fill ed]
1210 -> 515
515 -> 1213
1212 [style=filled,fillcol or=green]
1213 [style=filled,fillcol or=green]
1211 [style=filled,fillcol or=green]
512 [shape=box, hei ght =0. 4, wi dt h=0. 4, fill col or =green, styl e=fill ed]
1211 -> 512
512 -> 1209
513 [shape=box, hei ght =0. 4, wi dt h=0. 4, fill col or =green, styl e=fill ed]
1211 -> 513
513 -> 1210
1209 [style=filled,fillcol or=green]

}

The ellipses represent VDisks. The rectangles represent FlashCopy Mappings. The colours of the shapes
represent the state of the FlashCopy Mappingsand V Disks. In one glance, the interactions between VDisks
and FlashCopy Mappings are clear and any issues are immediately obvious.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Figure 2. Sample directed graph

Inthenext section, wewill go through thisscript line by line and explain what isbeing done. Thetechniques
used in this script can be used in scripts of your own to perform whatever actionsyou require. If you prefer,
you can skip to Section 5, “Using the script” to learn how to use the script.

4. Script Analysis

When the script in Appendix A, Graph generating script is executed, it creates a new function called
nmakeFCVapTr ee in the active SVC CLI session. The script itself has no output. Once the function has
been created, it isinvoked by providing the function nameand aVDisk ID. It generates output in the DOT

language which can be captured and saved for later rendering. In this section, we analysis the script section
by section and explain its function.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

4.1. Lines 1-18

Thefirst 18 lines are concerned with setting up variables for use during the main loop.

Lines 1-15. Thefifteen first linessimply start the function and set up some variables assigning colours
to FCM and VDisk states. These can be changed to suit your needs, with the requirement that all 10 states
are present and the colours that are selected are part of the DOT language. Appendix B, Valid coloursin
the DOT language shows the colours supported by DOT.

Line16. Thislineoutputsthefirst lineof DOT, whichindicatesthat we'll be describing adirected graph.
Wecadll it F for FlashCopy, but the name is entirely arbitrary (within the constraints of the DOT language)

Linel7. Inthisline, we create an array called $possSr cs. Thisarray will betreated as a FIFO stack.

It will contain alist of VDisks which are possibly acting as the Sources of an FCM. At this point in the
execution, we add the VDisk ID that was provided as the sole parameter to the function. In subsequent
passes through the main loop, new VDisk IDs may be added, as required.

Line 18. Here, we create an empty array which will keep track of al VDisk IDs which have been
processed. Thisisto ensure that the script processes each VDisk ID once and once only.

4.2. Lines 19-26

These lines start the main loop and gather information about the next VDisk ID inthe $possSr cs stack.

Line 19. This starts the main loop of this script. The loop will execute as long as there are VDisk IDs
in $possSr cs. Thisloop ends on line 56.

Lines 20-21. Lines 20-21 perform the pop operation of a stack, removing the first element from
$possSrcs and assigning itto $curr Src.

Lines 22-26. Lines 22-26 show atechnique that will be repeated a number of timesin this script. This
technique is to run an svcinfo command and execute a series of commands based on each line of output
from the svcinfo command.

The technique has the following form:

svcinfo xxxx | while read varl var2 var3 rest; do
some commands using $varl, $var2, etc
done

This technique will take each line of output from the svcinfo command and pass it to the read built-in
command. The read command works in the following way:

read [name ..]

The read command takes a line from STDIN and splits it into words separated according to the Internal
Field Separator (IFS). By default, IFS is set to whitespace. The first word is assigned to the first nane,
the second to the second nane and so on. Any leftover words are assigned to the final name with the
intervening IFS included.

In the technique shown above, the variables$var 1, $var 2, etc can now be used by commandsinside the
while loop. The loop will repeat once per line of output from the svcinfo command. The variable $r est
is needed to capture any remaining values at the end of the line of output.

The command svci nfo | svdi sk -nohdr -filtervalue id=$curr Src will generate zero
or one line of output. (depending on whether the valuein $cur r Sr ¢ isan actual VDisk ID).

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Line 24. Thisline actsto 'dereference the VDisk status. The code $(eval echo \ $$vSt at us)
will take the value stored in $v St at us and treat it as the name of a variable and try to find the value
stored inthat. For instance, if $v St at us isequal to 'preparing' then thislinewill ook for the value found
in$pr epar i ng and, in this case, return 'yellow'. In thisway, we can assign coloursto VDisk states.

Line 25. This generates lines of DOT which define a node in the graph. In thisinstance a VDisk node
is generated. The VDisk nodeis an ellipse, filled in a colour representing the VDisk's state.

4.3. Lines 27-30

These two lines generate an array of FCM Target VDisk IDs and mark the current VDisk ID (held in
$curr ent Sr c) as having been processed.

Lines 27-29. Lines 27-29 create anew array that holds all of the FCMs which have the current VDisk
(represented by $cur r Sr c) as the Source VDisk. This array is called $newTgt s. These three lines
shows amethod of generating an array directly from the output of an svcinfo command. In this particular
instance, each line of svcinfo output generates 3 array elements:

$newTgt s[L] FlashCopy Mapping 1D
$newTgt s[L+1] Target VDisk ID
$newTgt s[L+2] FlashCopy Mapping status

where L increases by one per line of svcinfo output.

Line30. Line 30 keepstrack of the fact that we have now processed the VDisk ID(asan FCM Source...
it may appear later as an FCM Target).

4.4. Lines 31-46

These lines process the FCMs that were placed into $newTgt s and generate the appropriate DOT to
represent them.

Line 31. Lines 31 creates the loop to process $newTgt s. It creates an index variable which is
incremented by 3 for each pass (since 3 elements in an array represent one FC Mapping).

Lines 32-35. Lines 32 to 34 simply collect the relevant array elements in to clearer variable names.
Line 35 decodes the FC Mapping statusinto a colour, much like line 24.

Lines36-39. Lines36-39 generate DOT language; lines 36 and 37 creates an FC Mapping node, which
isasguarefilled with a colour that represents its state.

Lines 38 and 39 generate the edges that link the FC Mapping node with its Source and Target V Disks.

Lines40-42. Lines 40-42 look at the FCM Target and determine whether or not it has been processed
asaSource. If it hasnot, it isadded to our list of possible Sources: $possSr ¢s. Thecodein line 41 acts
to place thisnew VDisk ID at the end of the stack.

Lines43-45. Lines43-451o0k to seeif there are any dependencies between thisFCM and other FCMs.
If there are, anew edge is generated to indicate this.

4.5. Lines 48-55

Lines 48-55 perform asimilar task to line 27 and the loop that followsiit.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Line48. Line 48 generates an array of FCM Source VDisk IDs, which have $cur r ent Sr ¢ astheir
Target. Thisarray is called $newSr cs. Instead of generating any DOT in the loop, however, this loop
simply addstheindicated VDisk IDstothe $poss Sr ¢s array, if they have not previously been processed.

4.6. Lines 56-58

All that remains at this point is to complete the loops, close out the DOT language with a curly bracket
and the function is complete.

5. Using the script

There are two simple ways to use the script. It can be executed directly from an interactive CLI session,
or it can be used as part of abatch session.

5.1. Interactive session

Adding the mak e FCTr eeMap function to an interactive session is very straightforward. Simply copy the
full text of the script into the clipboard and then paste it into the terminal. Once the script has executed,
the makeFCTr eeMap function will be available to you for the remainder of that CLI session.

Once you've passed a VDisk ID to the function, you will need to copy the output from the CLI session
and place it into adot file for rendering.

5.2. Batch session

Adding the makeFCTr eeMap function to a batch session depends on your SSH client. Here, we will
discuss PUTTY for the Windows operating system and ssh for Linux or AIX®.

Whichever operating system you use, the output from the script will be returned to the STDOUT stream on
your local system. Y ou can redirect this output to adot file, and then passit to your rendering application.

5.2.1. Required script changes

When ascript is submitted to the SV C Cluster in thisway, STDIN isreplaced by the contents of the script
and executed as if it was typed in manually. Once the end of the file is reached, control returns to the
local command line and not the SV C command line. Since the normal function of the makeFCTreeMap
script is to create a new function in the CLI session (and nothing more), the following modifications are
needed to generate output:

» Deletelinesland 2
» Deleteline58
* Replace $1 inline 17 with the ID of the VDisk that you're interested in.

Once these changes have been made, the resulting scri pt _fi | e should be submitted to the cluster
using one of the methods shown in the next subsections.

5.2.2. PUTTY

The plink command comes as part of the PUTTY application. Example 5, “ Submitting script to an SVC
cluster using plink” shows the command to use to submit a script to an SVC cluster.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Example 5. Submitting script to an SVC cluster using plink

plink -1 admin -mscript file -i private key file cluster_nane
script_file The file containing the makeFCTreeMap script
private_key file An SSH private key which correspondsto apublic key that hasbeen
uploaded to the SV C cluster in question
cl uster_nane The IP address or DNS name
5.2.3. SSH

The ssh command comes with most (if not al) *nix operating systems. Example 6, “ Submitting script to
an SV C cluster using ssh” shows the invocation required to submit a script to an SV C cluster using ssh.

Example 6. Submitting script to an SVC cluster using ssh

ssh -i private key file -T adm n@l uster_nane < script _file
script_file Thefile containing the makeFCTreeMap script
private_key file An SSH private key which correspondsto apublic key that hasbeen

uploaded to the SV C cluster in question

cl uster_nane The IP address or DNS name

6. Possible Improvements

Thescriptin Appendix A, Graph generating script functionscorrectly for al possible VDisk IDs, including
ones that are not present on the cluster. However, there are some interesting changes that could be made
to enhance the script. These are offered as suggestions and are | eft to the reader to implement:

Possible improvementsto script

Handle Multiple VDisk IDs The current version of thenakeFCTr eeMap only acceptsasingle
VDisk ID. It would be afairly simple task to change the script to
allow the function to accept any number of VDisk IDs. It would
be important to check for duplicate VDisk IDs appearing in the
$possSrcs stack.

Handle FlashCopy Mapping IDs Expanding this script to support FCM IDs instead of VDisk IDs
is the straightforward task of taking the FCM ID, determining the
Source VDisk's D and placing thisinto the $poss Sr cs stack and
then proceeding as before. The challenge lies in making the one
script support VDisk IDsand FCM IDs.

Handle FlashCopy Consistency Handling FlashCopy Consistency Groups is the natural
Group IDs combination of handling multiple VDisk IDs and handling
FlashCopy Mappings, since an FCG is simply a group of FCMs.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

The following code will turn an FCG id into an array of FCM ids:
fcm Ds=("svcinfo Isfcmap -nohdr -filterval ue
group_id=0 | while read fcmd rest; do echo
$fcm d; done’)

A. Graph generating script

The script below has been formatted so that it will fit onto the page. Asaresult, line continuation operators
have been used on lines 22, 27, 28, 36 and 48.

1 makeFCMVapTree ()
{
Define the colouring for FC Mapping and VDi sk states
i dl e_or_copi ed=gr een
5 prepari ng=yel | ow
pr epar ed=gr een
copyi ng=gr een
st opped=red
suspended=red
10 st oppi ng=yel | ow
onl i ne=gr een
of fl i ne=red
degr aded=yel | ow

15 # Start the directed graph
echo "digraph F {";
possSrcs=($1);
processed=();
while [${#possSrcs[@} -gt 0]; do
20 curr Src=${possSrcs[0] };
possSrcs=(${possSrcs[@: 1});
svcinfo | svdisk -nohdr -filtervalue id=$currSrc | while read id name \
i ogld i ogName vStatus junk; do
vdkCol our =$(eval echo \ $$vStatus);
25 echo "$currSrc [style=filled,fillcol or=$vdkCol our]";
done
newTgt s=(" svcinfo | sfcmap -nohdr -filtervalue source_vdi sk_id=$currSrc \
-delim:| while IFS=: read id n srcld srcNane tgtld tgtNane gld gNane \
status junk; do echo "$id $tgtld $status"; done’);
30 processed[$curr Src] =y;
for ((i=0; i<${#newTgts[@};i=$(($ + 3)))); do
fcme${ newTgt s[$i] };
tgt =${newTgts[$(($i + 1))]};
stat us=${ newTgt s[$(($i + 2))]};
35 col our =$(eval echo \$$status);
echo "fc$fcm [| abel =\ "$f cm "shape=box, hei ght =0. 4, wi dt h=0. 4, \
fillcol or=$col our,style=filled]";
echo "$currSrc -> fc$fent
echo "fc$fcm-> $tgt";
40 if ["${processed[$tgt]}" !'= "y"]; then
possSrcs=(${possSrcs[@} $tgt);
fi;
svcinfo | sfcrmapdependent maps -nohdr $fcm | while read fcld fcName; do

10

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

echo "$fcm-> $fcld [styl e=dotted]"”

45 done
done;

newSrcs=(" svcinfo | sfcmap -nohdr -filtervalue target_vdisk_id=$currSrc
while read id nane srcld junk; do echo "$srcld "
50 for src in ${newSrcs[@};

do
if [

"${processed[$src]}"

=y

possSrcs=(${possSrcs[@} $src);

fi;
55 done;
done;
echo "}"

t hen

done’);

B. Valid colours in the DOT language

The following are acceptable coloursin the DOT language: Thislist can also be found at Graphviz Color

Names [http://www.graphviz.org/doc/info/col ors.html]

al i cebl ue
antiquewhite
antiquewhitel
anti quewhi t e2
anti quewhite3
anti quewhite4
aquanari ne
aquanari nel
aquanari ne2
aquanari ne3
aquanari ne4
azure

azurel

azure2

azure3

azure4d

bei ge

bi sque

bi squel

bi sque2

bi sque3

bi sque4

bl ack

bl anchedal nmond
bl ue

bl uel

bl ue2

bl ue3

bl ue4

bl uevi ol et

br own

br ownl

grayl8
grayl9
gray20
gray2l
gray22
gray23
gray24
gray2b
gray26
gray27
gray28
gray29
gray30
gray3l
gray32
gray33
gray34
gray35
gray36
gray37
gray38
gray39
gray40
gray4l
gray4?
gray43
gray44
gray4s
gray46
graya7
gray48
gray49

grey74
grey75
grey76
grey77
grey78
grey79
grey80
grey8l
grey82
grey83
grey84
grey85
grey86
grey87
grey88
grey89
grey90
grey9l
grey92
grey93
grey94
grey95
grey96
grey97
grey98
grey99
greyl00
honeydew
honeydewl
honeydew?2
honeydew3
honeydew4

orangel

or ange?2
orange3
orange4

or anger ed

or anger edl

or anger ed2

or anger ed3

or anger ed4
orchid

orchidl
orchi d2
orchi d3
orchi d4

pal egol denr od
pal egreen

pal egreenl

pal egr een2

pal egreen3

pal egr een4

pal et ur quoi se
pal et ur quoi sel
pal et ur quoi se2
pal et ur quoi se3
pal et ur quoi se4
pal evi ol etred
pal evi ol etredl
pal evi ol etred2
pal evi ol etred3
pal evi ol etred4
papayawhi p
peachpuf f

11

\

http://www.graphviz.org/doc/info/colors.html
http://www.graphviz.org/doc/info/colors.html
http://www.graphviz.org/doc/info/colors.html

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

br own2

br own3

br own4
bur | ywood

bur| ywood1

bur | ywood2

bur | ywood3
bur| ywood4
cadet bl ue
cadet bl uel
cadet bl ue2
cadet bl ue3
cadet bl ue4
chartreuse
chartreusel
chartreuse2
chartreuse3
chartreuse4
chocol at e
chocol at el
chocol at e2
chocol at e3
chocol at e4
coral

coral 1

coral 2

coral 3

coral 4

cor nfl ower bl ue
cornsilk
cornsil kil
cornsil k2
cornsil k3
cornsil k4
crinson

cyan

cyanl

cyan2

cyan3

cyan4d

dar kgol denr od
dar kgol denr od1
dar kgol denr od2
dar kgol denr od3
dar kgol denr od4
dar kgr een

dar kkhak

dar kol i vegr een
dar kol i vegr eenl
dar kol i vegr een2
dar kol i vegr een3
dar kol i vegr een4
dar kor ange

dar kor angel

gray50
gray51
grayb52
gray53
grayb54
gray55
grayb56
gray57
gray58
gray59
gray60
gray6l
gray62
graye63
grayb64
graye6s
gray66
graye67
graye68
graye69
gray70
gray7l
gray72
gray73
gray74
gray75
gray76
gray77
gray78
gray79
gray80
gray8l
gray82
gray83
gray84
gray85
gray86
gray87
gray88
gray89
gray9o0
gray9l
gray92
gray9s3
gray94
gray9gs
gray96
gray9g7
gray9s
gray99
grayl100
green
greenl
green2

hot pi nk
hot pi nk1
hot pi nk2
hot pi nk3
hot pi nk4
i ndi anred
i ndi anr edl

i ndi anred2

i ndi anred3

i ndi anr ed4

i ndi go

ivory

ivoryl

ivory2

ivory3

ivory4

khaki

khaki 1

khaki 2

khaki 3

khaki 4

| avender

| avender bl ush
| avender bl ushl
| avender bl ush2
| avender bl ush3
| avender bl ush4
| awngr een

| enonchi ffon

| enonchi ffonl
| enonchi ffon2
| enonchi ffon3
| enonchi ffon4d
[i ght bl ue

I i ght bl uel

I i ght bl ue2

I i ght bl ue3

I i ght bl ue4d

i ghtcoral

i ghtcyan

i ghtcyanl

I i ghtcyan2

i ghtcyan3

i ghtcyan4

I i ght gol denr od
I i ght gol denr od1
I i ght gol denr od2
I i ght gol denr od3
I i ght gol denr od4

peachpuffl
peachpuf f 2
peachpuf f3
peachpuff4
peru

pi nk

pi nkl

pi nk2

pi nk3

pi nk4

pl um

pl umt

pl unt

pl ung

pl umd
powder bl ue
purpl e
pur pl el
pur pl e2
pur pl e3
pur pl e4
red

redl

red2

red3

red4

r osybr own
r osybr ownl
r osybr own2
r osybr own3
r osybr own4
royal bl ue
royal bl uel
r oyal bl ue2
royal bl ue3
royal bl ue4
saddl ebr own
sal non

sal nonl
sal non2
sal non3
sal non4
sandybr own
seagreen
seagreenl
seagreen2
seagr een3
seagreen4
seashel |

I i ght gol denr odyel lsmashel | 1

lightgray
lightgrey
[i ght pi nk
I i ght pi nk1

seashel | 2
seashel | 3
seashel | 4
si enna

12

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

dar kor ange2
dar kor ange3
dar kor ange4
dar kor chi d
dar kor chi d1
dar kor chi d2
dar kor chi d3
dar kor chi d4
dar ksal non
dar kseagr een
dar kseagr eenl
dar kseagr een2
dar kseagr een3
dar kseagr een4
dar ksl at ebl ue
dar ksl at egr ay
dar ksl at egray1
dar ksl at egray?2
dar ksl at egray3
dar ksl at egr ay4
dar ksl at egr ey
dar kt ur quoi se
dar kvi ol et
deeppi nk
deeppi nkl
deeppi nk2
deeppi nk3
deeppi nk4
deepskybl ue
deepskybl uel
deepskybl ue2
deepskybl ue3
deepskybl ue4d
di ngr ay

di ngr ey
dodger bl ue
dodger bl uel
dodger bl ue2
dodger bl ue3
dodger bl ue4
firebrick
firebrickl
firebrick2
firebrick3
firebrick4
floralwhite
forestgreen
gai nshoro
ghostwhite
gol d

gol d1

gol d2

gol d3

gol d4

green3
green4
greenyel | ow
grey
greyO
greyl
grey2
grey3
greyd
grey5
greyb6
grey7
grey8
grey9
greylo
greyll
greyl?
greyls3
greyl4
greyl5
greyl6
greyl?
greyl8
greyl9
grey20
grey2l
grey22
grey23
grey24
grey25
grey26
grey27
grey28
grey29
grey30
grey3l
grey32
grey33
grey34
grey35
grey36
grey37
grey38
grey39
grey40
grey4l
grey42
grey43
greyd4
grey4b
grey46
greya7
grey48
grey49

I i ght pi nk2

I i ght pi nk3

I i ght pi nk4

i ght sal non

I i ghtsal nronl

I i ght sal non2

I i ghtsal nron3

I i ght sal non4

I i ght seagreen
I i ght skybl ue
I'i ght skybl uel
I'i ght skybl ue2
I'i ght skybl ue3
I'i ght skybl ue4d
i ght sl at ebl ue
i ghtsl ategray
i ghtslategrey
i ght steel bl ue

I i ght steel bl uel
| i ght steel bl ue2
| i ght steel bl ue3
I i ght steel bl ued

lightyel | ow
lightyell owl
lightyell ow2
lightyell ow3
lightyel | ow4

I i megreen
linen
magent a
magent al
magent a2
magent a3
magent a4
mar oon
mar oonl
mar oon2
mar oon3
mar oon4

medi
medi
medi
medi
medi
medi
medi
medi
medi
medi
medi
medi
medi
medi
medi

urmaguanari ne
unbl ue

unor chi d
unor chi d1
unor chi d2
unor chi d3
unor chi d4
unpur pl e
unpur pl el
unpur pl e2
unpur pl e3
unpur pl e4
unseagr een
unsl at ebl ue

si ennal

si enna2

si enna3

si enna4
skybl ue
skybl uel
skybl ue2
skybl ue3
skybl ue4

sl at ebl ue
sl at ebl uel
sl at ebl ue2
sl at ebl ue3
sl at ebl ue4
sl at egr ay
sl ategrayl
sl at egray?2
sl at egray3
sl at egr ay4
sl at egrey
snow

snowl
snow2
snow3
snow4
springgreen
springgreenl
springgreen2
springgreen3
springgreend
st eel bl ue
st eel bl uel
st eel bl ue2
st eel bl ue3
st eel bl ue4
tan

tanl

tan2

tan3

tan4
thistle
thistlel
thistle2
thistle3
thistled
tomat o
tomat ol

t omat 02

t omat 03

t omat 04
transpar ent
tur quoi se
turquoi sel

unspri nggreenturquoi se2

13

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

gol denr od
gol denr od1
gol denr od2
gol denr od3
gol denr od4
gray

grayO
grayl
gray2
gray3
gray4
grayb
grayb6
gray’7
gray8
gray9
graylo
grayll
grayl?
grayls3
grayl4
grayls
grayle
grayl?

grey50
grey51
greyb52
grey53
grey54
grey55
grey56
grey57
grey58
grey59
grey60
grey6l
greye62
greye63
greyb64
greye65
grey66
greye67
grey68
greye69
grey70
grey7l
grey72
grey73

medi unt ur quoi se
medi unvi ol etred
dni ght bl ue

m

m nt cr eam
nm styrose

m styrosel
m styrose2
m styrose3
m styrosed
noccasin
navaj owhite

navaj owhi t el
navaj owhi t e2
navaj owhi t e3
navaj owhi t e4

navy
navybl ue
ol dl ace

ol i vedrab
ol i vedrabl
ol i vedrab2
ol i vedr ab3
ol i vedr ab4
or ange

tur quoi se3
tur quoi se4
vi ol et

viol etred
vi ol etredl
vi ol etred2
vi ol etred3
vi ol etred4
wheat
wheat 1
wheat 2
wheat 3
wheat 4
white

whi t esnpke
yel | ow
yel | owl
yel | ow2
yel | ow3
yel | ow4
yel | owgr een

14

	Visualizing IBM SAN Volume Controller FlashCopy Mappings
	1. SVC FlashCopy Mappings
	2. The DOT Language
	3. SVC Command Line Scripting
	4. Script Analysis
	4.1. Lines 1-18
	4.2. Lines 19-26
	4.3. Lines 27-30
	4.4. Lines 31-46
	4.5. Lines 48-55
	4.6. Lines 56-58

	5. Using the script
	5.1. Interactive session
	5.2. Batch session
	5.2.1. Required script changes
	5.2.2. PuTTY
	5.2.3. SSH

	6. Possible Improvements
	A. Graph generating script
	B. Valid colours in the DOT language

