
1

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

Dan Rumney
January 22, 2009

With the introduction of Multiple-Target FlashCopy® and Cascaded FlashCopy to IBM® System Storage™ SAN
Volume Controller (SVC) , it can become difficult to keep track of which Virtual Disks are mapped to which, and
how FlashCopy Mappings (FCM) depend upon one another. While submitting svcinfocommands or using the SVC
Console can provide this information in a textual format, there are times when a diagram provides all the information
you need in an easy to understand format.

This paper outlines a method for generating diagrams that link VDisks and FlashCopy Mappings. It also serves as
a worked example of automation on the SVC Command Line. This paper assumes familiarity with SVC and the
FlashCopy functionality.

1. SVC FlashCopy Mappings
When SVC was introduced in 2003 it included a number of Copy Services: FlashCopy and Remote Copy.
FlashCopy is a Point-In-Time Copy Service, whereby the contents of a Source Virtual Disk (Source) is
copied to a Target Virtual Disk (Target), such that the Target is an exact copy of the Source, at that point in
time. The relationship between a Source and a Target is called a FlashCopy Mapping (FCM). The original
implementation was such that a Source could only ever have one active Target. In addition to this, a Target
of one FCM could not be the Source of another FCM. A number of FCMs can be gathered together into
a FlashCopy Consistency Group (FCG) and managed as a single entity, to ensure that all Target VDisks
in the FCG represent the exact same point in time.

With the release of SVC 4.2.1, new types of FlashCopy arrangements can be created. A single VDisk can
act as the Source to multiple Targets. In addition to this, a VDisk which is acting as the Target of one
FCM can also act as the Source of a different FCM. For more details on Copy Services in SVC, see the
Redbook SVC 4.2.1 Advanced Copy Services [SG24-7574-00] [http://www.redbooks.ibm.com/abstracts/
sg247574.html].

In a complex environment, the interactions between FCMs and VDisks can get quite involved.
Dependencies between FCMs stem from internal data structures within the cluster rather than the logical
connections between VDisks. All of these dependencies can be discovered by submitting the appropriate
svcinfo commands, but the information is presented in a purely textual way; this provides no insight into
the interaction between cluster objects. Example 1, “Sample output from SVC commands, viewing FCM
interactions” shows how this output looks.

http://www.redbooks.ibm.com/abstracts/sg247574.html
http://www.redbooks.ibm.com/abstracts/sg247574.html
http://www.redbooks.ibm.com/abstracts/sg247574.html

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

2

Example 1. Sample output from SVC commands, viewing FCM interactions

IBM_2145:cluster_name:admin>svcinfo lsfcmap -delim :
id:name:source_vdisk_id:source_vdisk_name:target_vdisk_id:target_vdisk_name:
group_id:group_name:status:progress:copy_rate:clean_progress:incremental
0:fcmap0:1039:vdisk1039:1040:vdisk1040:::idle_or_copied:100:93:100:on
1:fcmap1:1041:vdisk1041:1042:vdisk1042:::idle_or_copied:100:30:100:off
2:fcmap2:1043:vdisk1043:1044:vdisk1044:::idle_or_copied:100:88:100:on
3:fcmap3:1045:vdisk1045:1046:vdisk1046:::idle_or_copied:100:36:100:off
4:fcmap4:1046:vdisk1046:1047:vdisk1047:::idle_or_copied:100:96:100:on
IBM_2145:cluster_name:admin>
IBM_2145:cluster_name:admin>svcinfo lsfcmapdependentmaps -delim : 2
fc_id:fc_name
1:fcmap1
3:fcmap3

The output from the svcinfo command does not lend itself to a swift overview of the cluster state. We look
to the DOT language to generate a graphical representation of this information.

2. The DOT Language
The DOT Language is a language used to describe directed and undirected graphs. Once written, the DOT
can then be processed by an appropriate program, to render the graph on screen.

A directed graph consists of nodes and edges. A node is a graphical shape which may or may not contain
some text. The nodes are interconnected by lines, called edges. In a directed graph, the edges have arrows
at one or both ends. Figure 1, “Sample directed graph” shows a sample directed graph. Ellipses a,b, c
and d are all nodes.

Figure 1. Sample directed graph

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

3

The DOT language is quite straightforward; for instance, the DOT required to generate Figure 1, “Sample
directed graph” can be seen in Example 2, “DOT language for generating a directed graph”. The nodes
are represented by the various letters. In each line in the example, you can see the 'arrow' notation which
indicates a directed edge, joining two nodes.

Example 2. DOT language for generating a directed graph

digraph EXAMPLE
{
 a -> c;
 b -> c;
 c -> d;
 d -> a;
}

A DOT file only describes the graph. You must pass this file to a rendering program in order to generate
a graphical representation. Once such program is dot, which is part of the Graphviz [http://graphviz.org/
] package. Once installed, the invocation shown in Example 3, “Invocation to generate graphic from
DOT language (Windows)” will generate a GIF file rendering of the sample directed graph described in
Example 2, “DOT language for generating a directed graph”.

Example 3. Invocation to generate graphic from DOT language (Windows)

dot -T gif -o sampleDigraph.gif -K dot -v sampleDiGraph.dot

The capabilities of the DOT language lend themselves directly to the challenge of visualizing FlashCopy
Mapping and VDisk relationships. The challenge is to generate the DOT necessary to generate our required
visualization. In order to do this, we can use SVC Command Line Scripting.

3. SVC Command Line Scripting
The SVC Command Line Interface is based on a restricted Bash Shell. This provides us with a double-
edged opportunity. On one hand, the Bash Shell means that we have the opportunity to execute scripts
while logged in to the SVC Command Line. On the other hand, the restricted aspect strongly limits what
we can do and results in the need for some imaginative scripting.

The Bash Shell includes a number of 'built-in' commands that can be used, such as:

if
while
for
read
echo

The restrictions on the Shell mean that there is no access to scripting standards such as sed, awk and
grep. In addition, IO cannot be redirected to files. However, command output can be redirected to other
commands, via pipes.

Appendix A, Graph generating script contains the script that we'll be discussing for the remainder of this
paper. This script creates a CLI function which, when executed, generates DOT language which describes
the connections between a set of VDisks and FCMs. The CLI function has one parameter, which is the id
of one of the cluster's VDisks. Given a VDisk ID, this command follows the procedure below.

1. Search for any FCMs which have the provided VDisk as a Source or Target

http://graphviz.org/
http://graphviz.org/

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

4

2. For any FCMs found, identify the counterpart VDisks and repeat step 1 for each of the new VDisks

3. For all of the FCMs found, search for all dependant FCMs

4. Generate the DOT language, describing the VDisk and FCM interactions

Example 4, “Sample output from script” shows example output from this function. When rendered by dot,
the graphic shown in Figure 2, “Sample directed graph”

Example 4. Sample output from script

IBM_2145:cluster_name:admin>makeFCMapTree 1212
digraph F {
 1210 [style=filled,fillcolor=green]
 514 [shape=box,height=0.4,width=0.4,fillcolor=green,style=filled]
 1210 -> 514
 514 -> 1212
 515 [shape=box,height=0.4,width=0.4,fillcolor=green,style=filled]
 1210 -> 515
 515 -> 1213
 1212 [style=filled,fillcolor=green]
 1213 [style=filled,fillcolor=green]
 1211 [style=filled,fillcolor=green]
 512 [shape=box,height=0.4,width=0.4,fillcolor=green,style=filled]
 1211 -> 512
 512 -> 1209
 513 [shape=box,height=0.4,width=0.4,fillcolor=green,style=filled]
 1211 -> 513
 513 -> 1210
 1209 [style=filled,fillcolor=green]
}

The ellipses represent VDisks. The rectangles represent FlashCopy Mappings. The colours of the shapes
represent the state of the FlashCopy Mappings and VDisks. In one glance, the interactions between VDisks
and FlashCopy Mappings are clear and any issues are immediately obvious.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

5

Figure 2. Sample directed graph

In the next section, we will go through this script line by line and explain what is being done. The techniques
used in this script can be used in scripts of your own to perform whatever actions you require. If you prefer,
you can skip to Section 5, “Using the script” to learn how to use the script.

4. Script Analysis
When the script in Appendix A, Graph generating script is executed, it creates a new function called
makeFCMapTree in the active SVC CLI session. The script itself has no output. Once the function has
been created, it is invoked by providing the function name and a VDisk ID. It generates output in the DOT
language which can be captured and saved for later rendering. In this section, we analysis the script section
by section and explain its function.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

6

4.1. Lines 1-18
The first 18 lines are concerned with setting up variables for use during the main loop.

Lines 1-15. The fifteen first lines simply start the function and set up some variables assigning colours
to FCM and VDisk states. These can be changed to suit your needs, with the requirement that all 10 states
are present and the colours that are selected are part of the DOT language. Appendix B, Valid colours in
the DOT language shows the colours supported by DOT.

Line 16. This line outputs the first line of DOT, which indicates that we'll be describing a directed graph.
We call it F for FlashCopy, but the name is entirely arbitrary (within the constraints of the DOT language)

Line 17. In this line, we create an array called $possSrcs. This array will be treated as a FIFO stack.
It will contain a list of VDisks which are possibly acting as the Sources of an FCM. At this point in the
execution, we add the VDisk ID that was provided as the sole parameter to the function. In subsequent
passes through the main loop, new VDisk IDs may be added, as required.

Line 18. Here, we create an empty array which will keep track of all VDisk IDs which have been
processed. This is to ensure that the script processes each VDisk ID once and once only.

4.2. Lines 19-26
These lines start the main loop and gather information about the next VDisk ID in the $possSrcs stack.

Line 19. This starts the main loop of this script. The loop will execute as long as there are VDisk IDs
in $possSrcs. This loop ends on line 56.

Lines 20-21. Lines 20-21 perform the pop operation of a stack, removing the first element from
$possSrcs and assigning it to $currSrc.

Lines 22-26. Lines 22-26 show a technique that will be repeated a number of times in this script. This
technique is to run an svcinfo command and execute a series of commands based on each line of output
from the svcinfo command.

The technique has the following form:

svcinfo xxxx | while read var1 var2 var3 rest; do
 some commands using $var1, $var2, etc
done

This technique will take each line of output from the svcinfo command and pass it to the read built-in
command. The read command works in the following way:

read [name ...]

The read command takes a line from STDIN and splits it into words separated according to the Internal
Field Separator (IFS). By default, IFS is set to whitespace. The first word is assigned to the first name,
the second to the second name and so on. Any leftover words are assigned to the final name with the
intervening IFS included.

In the technique shown above, the variables $var1, $var2, etc can now be used by commands inside the
while loop. The loop will repeat once per line of output from the svcinfo command. The variable $rest
is needed to capture any remaining values at the end of the line of output.

The command svcinfo lsvdisk -nohdr -filtervalue id=$currSrc will generate zero
or one line of output. (depending on whether the value in $currSrc is an actual VDisk ID).

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

7

Line 24. This line acts to 'dereference' the VDisk status. The code $(eval echo \$$vStatus)
will take the value stored in $vStatus and treat it as the name of a variable and try to find the value
stored in that. For instance, if $vStatus is equal to 'preparing' then this line will look for the value found
in $preparing and, in this case, return 'yellow'. In this way, we can assign colours to VDisk states.

Line 25. This generates lines of DOT which define a node in the graph. In this instance a VDisk node
is generated. The VDisk node is an ellipse, filled in a colour representing the VDisk's state.

4.3. Lines 27-30
These two lines generate an array of FCM Target VDisk IDs and mark the current VDisk ID (held in
$currentSrc) as having been processed.

Lines 27-29. Lines 27-29 create a new array that holds all of the FCMs which have the current VDisk
(represented by $currSrc) as the Source VDisk. This array is called $newTgts. These three lines
shows a method of generating an array directly from the output of an svcinfo command. In this particular
instance, each line of svcinfo output generates 3 array elements:

$newTgts[L] FlashCopy Mapping ID

$newTgts[L+1] Target VDisk ID

$newTgts[L+2] FlashCopy Mapping status

where L increases by one per line of svcinfo output.

Line 30. Line 30 keeps track of the fact that we have now processed the VDisk ID(as an FCM Source...
it may appear later as an FCM Target).

4.4. Lines 31-46
These lines process the FCMs that were placed into $newTgts and generate the appropriate DOT to
represent them.

Line 31. Lines 31 creates the loop to process $newTgts. It creates an index variable which is
incremented by 3 for each pass (since 3 elements in an array represent one FC Mapping).

Lines 32-35. Lines 32 to 34 simply collect the relevant array elements in to clearer variable names.
Line 35 decodes the FC Mapping status into a colour, much like line 24.

Lines 36-39. Lines 36-39 generate DOT language; lines 36 and 37 creates an FC Mapping node, which
is a square filled with a colour that represents its state.

Lines 38 and 39 generate the edges that link the FC Mapping node with its Source and Target VDisks.

Lines 40-42. Lines 40-42 look at the FCM Target and determine whether or not it has been processed
as a Source. If it has not, it is added to our list of possible Sources: $possSrcs. The code in line 41 acts
to place this new VDisk ID at the end of the stack.

Lines 43-45. Lines 43-45 look to see if there are any dependencies between this FCM and other FCMs.
If there are, a new edge is generated to indicate this.

4.5. Lines 48-55
Lines 48-55 perform a similar task to line 27 and the loop that follows it.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

8

Line 48. Line 48 generates an array of FCM Source VDisk IDs, which have $currentSrc as their
Target. This array is called $newSrcs. Instead of generating any DOT in the loop, however, this loop
simply adds the indicated VDisk IDs to the $possSrcs array, if they have not previously been processed.

4.6. Lines 56-58
All that remains at this point is to complete the loops, close out the DOT language with a curly bracket
and the function is complete.

5. Using the script
There are two simple ways to use the script. It can be executed directly from an interactive CLI session,
or it can be used as part of a batch session.

5.1. Interactive session
Adding the makeFCTreeMap function to an interactive session is very straightforward. Simply copy the
full text of the script into the clipboard and then paste it into the terminal. Once the script has executed,
the makeFCTreeMap function will be available to you for the remainder of that CLI session.

Once you've passed a VDisk ID to the function, you will need to copy the output from the CLI session
and place it into a dot file for rendering.

5.2. Batch session
Adding the makeFCTreeMap function to a batch session depends on your SSH client. Here, we will
discuss PuTTY for the Windows operating system and ssh for Linux or AIX®.

Whichever operating system you use, the output from the script will be returned to the STDOUT stream on
your local system. You can redirect this output to a dot file, and then pass it to your rendering application.

5.2.1. Required script changes

When a script is submitted to the SVC Cluster in this way, STDIN is replaced by the contents of the script
and executed as if it was typed in manually. Once the end of the file is reached, control returns to the
local command line and not the SVC command line. Since the normal function of the makeFCTreeMap
script is to create a new function in the CLI session (and nothing more), the following modifications are
needed to generate output:

• Delete lines 1 and 2

• Delete line 58

• Replace $1 in line 17 with the ID of the VDisk that you're interested in.

Once these changes have been made, the resulting script_file should be submitted to the cluster
using one of the methods shown in the next subsections.

5.2.2. PuTTY

The plink command comes as part of the PuTTY application. Example 5, “Submitting script to an SVC
cluster using plink” shows the command to use to submit a script to an SVC cluster.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

9

Example 5. Submitting script to an SVC cluster using plink

plink -l admin -m script_file -i private_key_file cluster_name

script_file The file containing the makeFCTreeMap script

private_key_file An SSH private key which corresponds to a public key that has been
uploaded to the SVC cluster in question

cluster_name The IP address or DNS name

5.2.3. SSH

The ssh command comes with most (if not all) *nix operating systems. Example 6, “Submitting script to
an SVC cluster using ssh” shows the invocation required to submit a script to an SVC cluster using ssh.

Example 6. Submitting script to an SVC cluster using ssh

ssh -i private_key_file -T admin@cluster_name < script_file

script_file The file containing the makeFCTreeMap script

private_key_file An SSH private key which corresponds to a public key that has been
uploaded to the SVC cluster in question

cluster_name The IP address or DNS name

6. Possible Improvements
The script in Appendix A, Graph generating script functions correctly for all possible VDisk IDs, including
ones that are not present on the cluster. However, there are some interesting changes that could be made
to enhance the script. These are offered as suggestions and are left to the reader to implement:

Possible improvements to script

Handle Multiple VDisk IDs The current version of the makeFCTreeMap only accepts a single
VDisk ID. It would be a fairly simple task to change the script to
allow the function to accept any number of VDisk IDs. It would
be important to check for duplicate VDisk IDs appearing in the
$possSrcs stack.

Handle FlashCopy Mapping IDs Expanding this script to support FCM IDs instead of VDisk IDs
is the straightforward task of taking the FCM ID, determining the
Source VDisk's ID and placing this into the $possSrcs stack and
then proceeding as before. The challenge lies in making the one
script support VDisk IDs and FCM IDs.

Handle FlashCopy Consistency
Group IDs

Handling FlashCopy Consistency Groups is the natural
combination of handling multiple VDisk IDs and handling
FlashCopy Mappings, since an FCG is simply a group of FCMs.

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

10

The following code will turn an FCG id into an array of FCM ids:
fcmIDs=(`svcinfo lsfcmap -nohdr -filtervalue
group_id=0 | while read fcmid rest; do echo
$fcmid; done`)

A. Graph generating script
The script below has been formatted so that it will fit onto the page. As a result, line continuation operators
have been used on lines 22, 27, 28, 36 and 48.

 1 makeFCMapTree ()
 {
 # Define the colouring for FC Mapping and VDisk states
 idle_or_copied=green
 5 preparing=yellow
 prepared=green
 copying=green
 stopped=red
 suspended=red
 10 stopping=yellow
 online=green
 offline=red
 degraded=yellow

 15 # Start the directed graph
 echo "digraph F {";
 possSrcs=($1);
 processed=();
 while [${#possSrcs[@]} -gt 0]; do
 20 currSrc=${possSrcs[0]};
 possSrcs=(${possSrcs[@]:1});
 svcinfo lsvdisk -nohdr -filtervalue id=$currSrc | while read id name \
 iogId iogName vStatus junk; do
 vdkColour=$(eval echo \$$vStatus);
 25 echo "$currSrc [style=filled,fillcolor=$vdkColour]";
 done
 newTgts=(`svcinfo lsfcmap -nohdr -filtervalue source_vdisk_id=$currSrc \
 -delim :| while IFS=: read id n srcId srcName tgtId tgtName gId gName \
 status junk; do echo "$id $tgtId $status"; done`);
 30 processed[$currSrc]=y;
 for ((i=0; i<${#newTgts[@]};i=$(($i + 3)))); do
 fcm=${newTgts[$i]};
 tgt=${newTgts[$(($i + 1))]};
 status=${newTgts[$(($i + 2))]};
 35 colour=$(eval echo \$$status);
 echo "fc$fcm [label=\"$fcm\"shape=box,height=0.4,width=0.4,\
 fillcolor=$colour,style=filled]";
 echo "$currSrc -> fc$fcm";
 echo "fc$fcm -> $tgt";
 40 if ["${processed[$tgt]}" != "y"]; then
 possSrcs=(${possSrcs[@]} $tgt);
 fi;
 svcinfo lsfcmapdependentmaps -nohdr $fcm | while read fcId fcName; do

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

11

 echo "$fcm -> $fcId [style=dotted]"
 45 done
 done;

 newSrcs=(`svcinfo lsfcmap -nohdr -filtervalue target_vdisk_id=$currSrc| \
 while read id name srcId junk; do echo "$srcId "; done`);
 50 for src in ${newSrcs[@]};
 do
 if ["${processed[$src]}" != "y"]; then
 possSrcs=(${possSrcs[@]} $src);
 fi;
 55 done;
 done;
 echo "}";
 }

B. Valid colours in the DOT language
The following are acceptable colours in the DOT language: This list can also be found at Graphviz Color
Names [http://www.graphviz.org/doc/info/colors.html]

aliceblue gray18 grey74 orange1
antiquewhite gray19 grey75 orange2
antiquewhite1 gray20 grey76 orange3
antiquewhite2 gray21 grey77 orange4
antiquewhite3 gray22 grey78 orangered
antiquewhite4 gray23 grey79 orangered1
aquamarine gray24 grey80 orangered2
aquamarine1 gray25 grey81 orangered3
aquamarine2 gray26 grey82 orangered4
aquamarine3 gray27 grey83 orchid
aquamarine4 gray28 grey84 orchid1
azure gray29 grey85 orchid2
azure1 gray30 grey86 orchid3
azure2 gray31 grey87 orchid4
azure3 gray32 grey88 palegoldenrod
azure4 gray33 grey89 palegreen
beige gray34 grey90 palegreen1
bisque gray35 grey91 palegreen2
bisque1 gray36 grey92 palegreen3
bisque2 gray37 grey93 palegreen4
bisque3 gray38 grey94 paleturquoise
bisque4 gray39 grey95 paleturquoise1
black gray40 grey96 paleturquoise2
blanchedalmond gray41 grey97 paleturquoise3
blue gray42 grey98 paleturquoise4
blue1 gray43 grey99 palevioletred
blue2 gray44 grey100 palevioletred1
blue3 gray45 honeydew palevioletred2
blue4 gray46 honeydew1 palevioletred3
blueviolet gray47 honeydew2 palevioletred4
brown gray48 honeydew3 papayawhip
brown1 gray49 honeydew4 peachpuff

http://www.graphviz.org/doc/info/colors.html
http://www.graphviz.org/doc/info/colors.html
http://www.graphviz.org/doc/info/colors.html

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

12

brown2 gray50 hotpink peachpuff1
brown3 gray51 hotpink1 peachpuff2
brown4 gray52 hotpink2 peachpuff3
burlywood gray53 hotpink3 peachpuff4
burlywood1 gray54 hotpink4 peru
burlywood2 gray55 indianred pink
burlywood3 gray56 indianred1 pink1
burlywood4 gray57 indianred2 pink2
cadetblue gray58 indianred3 pink3
cadetblue1 gray59 indianred4 pink4
cadetblue2 gray60 indigo plum
cadetblue3 gray61 ivory plum1
cadetblue4 gray62 ivory1 plum2
chartreuse gray63 ivory2 plum3
chartreuse1 gray64 ivory3 plum4
chartreuse2 gray65 ivory4 powderblue
chartreuse3 gray66 khaki purple
chartreuse4 gray67 khaki1 purple1
chocolate gray68 khaki2 purple2
chocolate1 gray69 khaki3 purple3
chocolate2 gray70 khaki4 purple4
chocolate3 gray71 lavender red
chocolate4 gray72 lavenderblush red1
coral gray73 lavenderblush1 red2
coral1 gray74 lavenderblush2 red3
coral2 gray75 lavenderblush3 red4
coral3 gray76 lavenderblush4 rosybrown
coral4 gray77 lawngreen rosybrown1
cornflowerblue gray78 lemonchiffon rosybrown2
cornsilk gray79 lemonchiffon1 rosybrown3
cornsilk1 gray80 lemonchiffon2 rosybrown4
cornsilk2 gray81 lemonchiffon3 royalblue
cornsilk3 gray82 lemonchiffon4 royalblue1
cornsilk4 gray83 lightblue royalblue2
crimson gray84 lightblue1 royalblue3
cyan gray85 lightblue2 royalblue4
cyan1 gray86 lightblue3 saddlebrown
cyan2 gray87 lightblue4 salmon
cyan3 gray88 lightcoral salmon1
cyan4 gray89 lightcyan salmon2
darkgoldenrod gray90 lightcyan1 salmon3
darkgoldenrod1 gray91 lightcyan2 salmon4
darkgoldenrod2 gray92 lightcyan3 sandybrown
darkgoldenrod3 gray93 lightcyan4 seagreen
darkgoldenrod4 gray94 lightgoldenrod seagreen1
darkgreen gray95 lightgoldenrod1 seagreen2
darkkhaki gray96 lightgoldenrod2 seagreen3
darkolivegreen gray97 lightgoldenrod3 seagreen4
darkolivegreen1 gray98 lightgoldenrod4 seashell
darkolivegreen2 gray99 lightgoldenrodyellowseashell1
darkolivegreen3 gray100 lightgray seashell2
darkolivegreen4 green lightgrey seashell3
darkorange green1 lightpink seashell4
darkorange1 green2 lightpink1 sienna

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

13

darkorange2 green3 lightpink2 sienna1
darkorange3 green4 lightpink3 sienna2
darkorange4 greenyellow lightpink4 sienna3
darkorchid grey lightsalmon sienna4
darkorchid1 grey0 lightsalmon1 skyblue
darkorchid2 grey1 lightsalmon2 skyblue1
darkorchid3 grey2 lightsalmon3 skyblue2
darkorchid4 grey3 lightsalmon4 skyblue3
darksalmon grey4 lightseagreen skyblue4
darkseagreen grey5 lightskyblue slateblue
darkseagreen1 grey6 lightskyblue1 slateblue1
darkseagreen2 grey7 lightskyblue2 slateblue2
darkseagreen3 grey8 lightskyblue3 slateblue3
darkseagreen4 grey9 lightskyblue4 slateblue4
darkslateblue grey10 lightslateblue slategray
darkslategray grey11 lightslategray slategray1
darkslategray1 grey12 lightslategrey slategray2
darkslategray2 grey13 lightsteelblue slategray3
darkslategray3 grey14 lightsteelblue1 slategray4
darkslategray4 grey15 lightsteelblue2 slategrey
darkslategrey grey16 lightsteelblue3 snow
darkturquoise grey17 lightsteelblue4 snow1
darkviolet grey18 lightyellow snow2
deeppink grey19 lightyellow1 snow3
deeppink1 grey20 lightyellow2 snow4
deeppink2 grey21 lightyellow3 springgreen
deeppink3 grey22 lightyellow4 springgreen1
deeppink4 grey23 limegreen springgreen2
deepskyblue grey24 linen springgreen3
deepskyblue1 grey25 magenta springgreen4
deepskyblue2 grey26 magenta1 steelblue
deepskyblue3 grey27 magenta2 steelblue1
deepskyblue4 grey28 magenta3 steelblue2
dimgray grey29 magenta4 steelblue3
dimgrey grey30 maroon steelblue4
dodgerblue grey31 maroon1 tan
dodgerblue1 grey32 maroon2 tan1
dodgerblue2 grey33 maroon3 tan2
dodgerblue3 grey34 maroon4 tan3
dodgerblue4 grey35 mediumaquamarine tan4
firebrick grey36 mediumblue thistle
firebrick1 grey37 mediumorchid thistle1
firebrick2 grey38 mediumorchid1 thistle2
firebrick3 grey39 mediumorchid2 thistle3
firebrick4 grey40 mediumorchid3 thistle4
floralwhite grey41 mediumorchid4 tomato
forestgreen grey42 mediumpurple tomato1
gainsboro grey43 mediumpurple1 tomato2
ghostwhite grey44 mediumpurple2 tomato3
gold grey45 mediumpurple3 tomato4
gold1 grey46 mediumpurple4 transparent
gold2 grey47 mediumseagreen turquoise
gold3 grey48 mediumslateblue turquoise1
gold4 grey49 mediumspringgreen turquoise2

Visualizing IBM SAN Volume
Controller FlashCopy Mappings

14

goldenrod grey50 mediumturquoise turquoise3
goldenrod1 grey51 mediumvioletred turquoise4
goldenrod2 grey52 midnightblue violet
goldenrod3 grey53 mintcream violetred
goldenrod4 grey54 mistyrose violetred1
gray grey55 mistyrose1 violetred2
gray0 grey56 mistyrose2 violetred3
gray1 grey57 mistyrose3 violetred4
gray2 grey58 mistyrose4 wheat
gray3 grey59 moccasin wheat1
gray4 grey60 navajowhite wheat2
gray5 grey61 navajowhite1 wheat3
gray6 grey62 navajowhite2 wheat4
gray7 grey63 navajowhite3 white
gray8 grey64 navajowhite4 whitesmoke
gray9 grey65 navy yellow
gray10 grey66 navyblue yellow1
gray11 grey67 oldlace yellow2
gray12 grey68 olivedrab yellow3
gray13 grey69 olivedrab1 yellow4
gray14 grey70 olivedrab2 yellowgreen
gray15 grey71 olivedrab3
gray16 grey72 olivedrab4
gray17 grey73 orange

	Visualizing IBM SAN Volume Controller FlashCopy Mappings
	1. SVC FlashCopy Mappings
	2. The DOT Language
	3. SVC Command Line Scripting
	4. Script Analysis
	4.1. Lines 1-18
	4.2. Lines 19-26
	4.3. Lines 27-30
	4.4. Lines 31-46
	4.5. Lines 48-55
	4.6. Lines 56-58

	5. Using the script
	5.1. Interactive session
	5.2. Batch session
	5.2.1. Required script changes
	5.2.2. PuTTY
	5.2.3. SSH

	6. Possible Improvements
	A. Graph generating script
	B. Valid colours in the DOT language

